1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD...
1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD...
1.弦切角定理(1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.(2)弦切角定理:弦切角的度数等于它所夹的弧的圆...
1.弦切角定理(1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.(2)弦切角定理:弦切角的度数等于它所夹的弧的圆...
【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转...
R【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转...
对于费马点问题,大家已经见得比较多了,相信都能熟练解决,如果所求最值中三条线段的系数有不为1的情况,我们把这类问题归为加权费马点问...
对于费马点问题,大家已经见得比较多了,相信都能熟练解决,如果所求最值中三条线段的系数有不为1的情况,我们把这类问题归为加权费马点问...
费马点问题思考:如何找一点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?,当B、P、Q、E四点共线时取得最小值.费马点的定义:数学上称,...
费马点问题思考:如何找一点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?,当B、P、Q、E四点共线时取得最小值.费马点的定义:数学上称,...
因为像奔驰车标,所以叫奔驰模型.【结论】如图,等边△ABC,PA=3,PB=4,PC=5,则①∠APB=150º,②S△ABC=√34AB2=25√3+364关键:旋...
因为像奔驰车标,所以叫奔驰模型.R【结论】如图,等边△ABC,PA=3,PB=4,PC=5,则①∠APB=150º,②S△ABC=√34AB2=25√3+364R关键:旋转...
背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为...
背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为...
αCABPABPαPCABD【模型总结】在求形如“PB+kPA”的式子的最值问题中,关键是构造与kPA相等的线段,将“PB+kPA”型问题转化为“PB+PC”型....
αCABPABPαPCABD【模型总结】在求形如“PB+kPA”的式子的最值问题中,关键是构造与kPA相等的线段,将“PB+kPA”型问题转化为“PB+PC”型....
正方形内部,MN⊥EF,则MN=EF★模型巧记:正方形内十字架模型,垂直一定相等,相等不一定垂直.★点拨:无论怎么变,只要垂直,十字架就相等...
正方形内部,MN⊥EF,则MN=EF★模型巧记:正方形内十字架模型,垂直一定相等,相等不一定垂直.★点拨:无论怎么变,只要垂直,十字架就相等...
有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓...
有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓...

